Gruppenpuzzle: Unterschied zwischen den Versionen
(Darstellung überarbeitet) Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
[[Datei:Gruppenpuzzle.png|miniatur|300px|Gruppenpuzzle]] | [[Datei:Gruppenpuzzle.png|miniatur|300px|Gruppenpuzzle]] | ||
[[Datei:Kooperatives lernen-pixabay.jpg|mini|Kooperatives Lernszenario]] | |||
Als '''Gruppenpuzzle''' bezeichnet man eine Methode des '''kooperativen Lernens'''. Dabei werden die Teilnehmer von gleich großen Arbeitsgruppen abwechselnd zu Stamm- und zu Expertengruppen zusammengesetzt. | Als '''Gruppenpuzzle''' bezeichnet man eine Methode des '''kooperativen Lernens'''. Dabei werden die Teilnehmer von gleich großen Arbeitsgruppen abwechselnd zu Stamm- und zu Expertengruppen zusammengesetzt. | ||
Zeile 6: | Zeile 7: | ||
Statt „zerlegen“ kann man auch (bildlich gesprochen) „zersägen“ sagen. Daher kommt der englische Ausdruck '''jigsaw''' für ''Gruppenpuzzle'' (von engl. „saw“: Säge). | Statt „zerlegen“ kann man auch (bildlich gesprochen) „zersägen“ sagen. Daher kommt der englische Ausdruck '''jigsaw''' für ''Gruppenpuzzle'' (von engl. „saw“: Säge). | ||
==Das Problem und die Lösung== | ==Das Problem und die Lösung== | ||
=== Das Problem === | |||
Gruppenarbeit soll die Eigenständigkeit und Eigenverantwortung des Lerners fördern, läuft aber oft so ab, dass Einzelne in der Gruppe die Arbeit erledigen und die Anderen sich führen lassen. Das geht bis hin zum Präsentieren der Gruppenergebnisse. Das erarbeitete und/oder präsentierte Ergebnis spiegelt folglich nicht den Wissensstand der einzelnen Gruppenmitglieder wieder - ''davon gehen aber Lehrerin oder Lehrer gerne aus''. Die Gruppenarbeit nützt wieder einmal denjenigen am meisten, die auch sonst initiativ, neugierig und zielorientiert sind. | Gruppenarbeit soll die Eigenständigkeit und Eigenverantwortung des Lerners fördern, läuft aber oft so ab, dass Einzelne in der Gruppe die Arbeit erledigen und die Anderen sich führen lassen. Das geht bis hin zum Präsentieren der Gruppenergebnisse. Das erarbeitete und/oder präsentierte Ergebnis spiegelt folglich nicht den Wissensstand der einzelnen Gruppenmitglieder wieder - ''davon gehen aber Lehrerin oder Lehrer gerne aus''. Die Gruppenarbeit nützt wieder einmal denjenigen am meisten, die auch sonst initiativ, neugierig und zielorientiert sind. | ||
=== Die Lösung === | |||
Im Gruppenpuzzle unterweisen Schüler ihre Mitschüler. Jeder ist Experte und Wissensvermittler zugleich. Experte wird er dadurch, dass er einen Spezialauftrag erhält, als Vermittler seines Expertenwissens betätigt er sich dann, wenn er sein Wissen in eine Gruppe einbringt. Unterschieden wird also zwischen Expertengruppen und Stammgruppen. Aus den Beiträgen der Experten wird dann in den Stammgruppen ein Gesamtbild zusammengesetzt: Das fertige Puzzle! [[Bild:Gruppenpuzzle.jpg|thumb|300px|Gruppenpuzzle-Schema]] | Im Gruppenpuzzle unterweisen Schüler ihre Mitschüler. Jeder ist Experte und Wissensvermittler zugleich. Experte wird er dadurch, dass er einen Spezialauftrag erhält, als Vermittler seines Expertenwissens betätigt er sich dann, wenn er sein Wissen in eine Gruppe einbringt. Unterschieden wird also zwischen Expertengruppen und Stammgruppen. Aus den Beiträgen der Experten wird dann in den Stammgruppen ein Gesamtbild zusammengesetzt: Das fertige Puzzle! [[Bild:Gruppenpuzzle.jpg|thumb|300px|Gruppenpuzzle-Schema]] | ||
Zur Organisation | === Zur Organisation === | ||
* Man stelle sich z.B. drei Großfamilien vor, die Maiers, die Müllers und die Schneiders. In jeder Familie gibt es eine Mutter, einen Vater, einen Sohn, eine Tochter und vielleicht noch einen Großvater, die Zahl der Familienmitglieder ist beliebig erweiterbar. Alle drei Familien haben beschlossen, zusammen in Urlaub zu fahren, wissen aber noch nicht wohin und wollen sich informieren. Sie machen dies arbeitsteilig: | * Man stelle sich z.B. drei Großfamilien vor, die Maiers, die Müllers und die Schneiders. In jeder Familie gibt es eine Mutter, einen Vater, einen Sohn, eine Tochter und vielleicht noch einen Großvater, die Zahl der Familienmitglieder ist beliebig erweiterbar. Alle drei Familien haben beschlossen, zusammen in Urlaub zu fahren, wissen aber noch nicht wohin und wollen sich informieren. Sie machen dies arbeitsteilig: | ||
* Am ersten Tag setzen sich jeweils alle Mütter, alle Väter, alle Söhne und alle Töchter zusammen und studieren Reiseführer: Die Väter einen Reiseführer über die Toscana, die Mütter über Tenerifa, die Töchter über Mallorca und die Söhne über die Bretagne. Somit sind Väter, Mütter, Söhne und Töchter jeweils Experten für dieses "Gebiet". | * Am ersten Tag setzen sich jeweils alle Mütter, alle Väter, alle Söhne und alle Töchter zusammen und studieren Reiseführer: Die Väter einen Reiseführer über die Toscana, die Mütter über Tenerifa, die Töchter über Mallorca und die Söhne über die Bretagne. Somit sind Väter, Mütter, Söhne und Töchter jeweils Experten für dieses "Gebiet". | ||
Zeile 21: | Zeile 25: | ||
==Organisationsformen== | ==Organisationsformen== | ||
{{Box|| | {{Box|| | ||
Um Stamm- und Expertengruppen zu bilden, eignen sich verschiedene Hilfsmittel und Modelle, die letztlich alle auf eine Gruppenbildung nach dem Zufallsprinzip hinauslaufen: | Um Stamm- und Expertengruppen zu bilden, eignen sich verschiedene Hilfsmittel und Modelle, die letztlich alle auf eine Gruppenbildung nach dem [[Zufallsprinzip]] hinauslaufen: | ||
;Spielkartensatz, bestehend aus 32 Karten: | ;Spielkartensatz, bestehend aus 32 Karten: |
Aktuelle Version vom 30. Oktober 2024, 18:29 Uhr
Als Gruppenpuzzle bezeichnet man eine Methode des kooperativen Lernens. Dabei werden die Teilnehmer von gleich großen Arbeitsgruppen abwechselnd zu Stamm- und zu Expertengruppen zusammengesetzt.
Die Analogie zum Puzzle besteht darin, dass eine Stammgruppe sozusagen in „Puzzleteile“ „zerschnitten“ und dann die Puzzleteile zu einem neuen „Bild“, der Expertenrunde, und schließlich wieder zur Stammgruppe zusammengesetzt werden.
Statt „zerlegen“ kann man auch (bildlich gesprochen) „zersägen“ sagen. Daher kommt der englische Ausdruck jigsaw für Gruppenpuzzle (von engl. „saw“: Säge).
Das Problem und die Lösung
Das Problem
Gruppenarbeit soll die Eigenständigkeit und Eigenverantwortung des Lerners fördern, läuft aber oft so ab, dass Einzelne in der Gruppe die Arbeit erledigen und die Anderen sich führen lassen. Das geht bis hin zum Präsentieren der Gruppenergebnisse. Das erarbeitete und/oder präsentierte Ergebnis spiegelt folglich nicht den Wissensstand der einzelnen Gruppenmitglieder wieder - davon gehen aber Lehrerin oder Lehrer gerne aus. Die Gruppenarbeit nützt wieder einmal denjenigen am meisten, die auch sonst initiativ, neugierig und zielorientiert sind.
Die Lösung
Im Gruppenpuzzle unterweisen Schüler ihre Mitschüler. Jeder ist Experte und Wissensvermittler zugleich. Experte wird er dadurch, dass er einen Spezialauftrag erhält, als Vermittler seines Expertenwissens betätigt er sich dann, wenn er sein Wissen in eine Gruppe einbringt. Unterschieden wird also zwischen Expertengruppen und Stammgruppen. Aus den Beiträgen der Experten wird dann in den Stammgruppen ein Gesamtbild zusammengesetzt: Das fertige Puzzle!
Zur Organisation
- Man stelle sich z.B. drei Großfamilien vor, die Maiers, die Müllers und die Schneiders. In jeder Familie gibt es eine Mutter, einen Vater, einen Sohn, eine Tochter und vielleicht noch einen Großvater, die Zahl der Familienmitglieder ist beliebig erweiterbar. Alle drei Familien haben beschlossen, zusammen in Urlaub zu fahren, wissen aber noch nicht wohin und wollen sich informieren. Sie machen dies arbeitsteilig:
- Am ersten Tag setzen sich jeweils alle Mütter, alle Väter, alle Söhne und alle Töchter zusammen und studieren Reiseführer: Die Väter einen Reiseführer über die Toscana, die Mütter über Tenerifa, die Töchter über Mallorca und die Söhne über die Bretagne. Somit sind Väter, Mütter, Söhne und Töchter jeweils Experten für dieses "Gebiet".
- Am zweiten Tag halten die Maiers, die Müllers und die Schneiders getrennt ihren Familienrat ab. Vater wird jetzt über die Toscana, Mutter über Teneriffa, die Tochter über Mallorca und der Sohn über die Bretagne informieren; sie werden vergleichen, nachfragen und sich vorläufige Gedanken machen.
- Am dritten Tag machen die drei Familien eine Großversammlung (bei Wein, Bier, Sprudel und Cola). Jeder dürfte jetzt über jedes Reiseland gut Bescheid wissen und zusätzlich Teneriffa- oder Mallorca-Experte sein. Jetzt können sie kompetent diskutieren und sich hoffentlich auf ein Reiseziel einigen. Damit sind, kurz gesagt, drei mal vier Leute (=12) gleichzeitig Lernende und Lehrer gewesen.
Organisationsformen
Das Gruppenpuzzle im Unterricht
Fach Deutsch (Literatur)
Gruppenpuzzle mit einem interaktiven Video
- Einführung in den Kurzfilm: 0 - 1:34
- Gruppenarbeit, ab 1:34, Aufgabenstellung und Bearbeitung: Zuweisung der Abschnitte über „Crossroads“ (Verzweigung)
- Gruppe 1: 1:35 - 3:05
- Gruppe 2: 3:06 - 4:49
- Gruppe 3: 3:50 - 6:28
- Gruppe 4: 6:29 - 8:38
- Gruppenpuzzle: Gemeinsame Konstruktion des Filminhalts in Gruppenpuzzle-Gruppen, Produktion gemeinsamer Inhaltsangaben in einem Etherpad: https://zumpad.zum.de/p/Dufte
Linktipps
- Gruppenpuzzle - in ZUM-Unterrichten